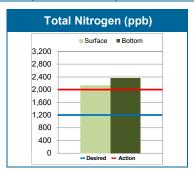
City of St. Petersburg—Harbor Isles

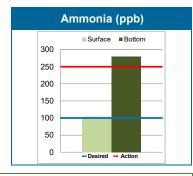
Water Quality Analysis

Sample date: 1/17/2022 Report date: 1/20/2022

Produced by: Ryan Ebanks, Laboratory Scientist Matt Kramer, Field Biologist

Report 2 Aquatic Glossary 3




888.480.LAKE (5253) solitudelakemanagement.com ©2020 All rights reserved

Water Quality Data: City of St. Petersburg—Harbor Isles, Site #3

Site Readings						
Test	Desired Range	Action Level	Surface	Bottom	This lake is:	
Nutrients - Total Phosphorus	< 30 ppb	> 100 ppb	100	107	High*	
Nutrients - Total Nitrogen	< 1200 ppb	>2000 ppb	2,132	2,369	High*	
Nutrients - Ammonia	< 100 ppb	>250 ppb	104	280	High*	
Alkalinity	>80 ppm	N/A	105	104	Normal	
Clarity - Turbidity	< 5 NTU	NA	7.14	5.72	High*	
Salinity	< 0.5 ppt	NA	4.2	4.2	High*	
pH reading	6.5	8.5	7.9	8	Normal	
Water Clarity - Secchi Depth	≥ 4 Feet	N/A	4		Normal	

Total Phosphorus (ppb) Surface Bottom 120 100 80 60 40 20 0 ---Desired --- Action

The TN/TP Ratio is: 21.70

When the TN/TP ratio is < 75, the chances of having toxin producing cyanobacterial blooms (blue-green algae) as plankton or filamentous mats increase. Water column phosphorus needs to be reduced to promote more desirable algal groups.

The trophic lake health index is: 70

Oligtrophic	Mesotrophic		Eutrophic	Hypereutrophic
0	30	60	90	120

Eutrophic lakes have a TSI of 41-100 and usually have intermittent plankton algae blooms, fair water clarity, muck accumulation, occasional odor, moderate dissolved oxygen levels, dense submersed plant growth and algae mats.

Dissolved Oxygen: DO (ppm) Temperature (°F) Indicates that this lake is: 0 1 2 3 4 5 6 7 8 9 10 60 62 64 66 68 70 72 74 76 Reduced Oxygen with Depth: The oxygen profile suggests that oxygen levels decrease with depth. It is possible that this waterbody is in the process of Water depth (ft) stratifying. This often leads to fish kills, algae blooms, 8 9 muck accumulation and foul odors. 10 11 Aquatic Stress Zone= FDEP dissolved 13 13 oxygen criteria for Class III waters. 14 14 15 15

Date: 1/17/2022

Observations

Since last month's sampling event, phosphorus and nitrogen levels have increased. They are all above the action level.

Field observation suggests that planktonic algae is still present in site but at a very low density along the perimeter. This is as of January the 17th, 2022.

Water quality analysis suggests that this site is experiencing elevated ammonia levels.

Ammonia is a byproduct of organic matter decomposition. It is common for ammonia to accumulate under low-oxygen conditions or from recent runoff events. Elevated ammonia may cause toxicity issues for aquatic life.

Elevated nitrogen may be due to fertilizer runoff, decaying plant material, or low oxygen levels at the bottom of the water column.

Lakes with high nutrient concentrations are likely to become an unbalanced ecosystem. This can lead to a variety of negative effects including, but not limited to, foul odors, reduced clarity, etc..

Dense planktonic algae blooms can often lead to reduced water clarity.

Trophic State Index (TSI)

A Trophic State Index (TSI) provides a single quantitative result for the purpose of classifying and ranking lakes in terms of water quality.

Nutrients such as phosphorus are usually the limiting resource for algae and plant abundance and therefore are used in creating a TSI reference number. Generally, the higher the lakes TSI the greater the likelihood of elevated nutrient levels, increased algae problems and decreased water clarity.

Due to the dynamic nature of Florida's geology and differing climate zones, regional locations may differ slightly in what is considered a healthy water quality profile.

TSI Values	Trophic Status	Attributes
30-40	Oligotrophic	Clear water, few plants and algae, small bass
40-50	Mesotrophic	Water moderately clear, but increasing probability of anoxia, green algae are likely dominant, balanced fishery with medium sized bass
50-60	Eutrophic	Decreased transparency, occasional light algal blooms, lots of available food making for large bass
60-70	Eutrophic	Dominance of blue-green algae, algal scums possible, extensive macrophyte problems possible, higher probability of anoxia, fishery starting to decline
70-80	Hypereutrophic	Dominance of blue-green algae, frequent algal scums, higher probability of anoxia, stunted fishery
>80	Hypereutrophic	Algal scums, higher probability of anoxia, fish kills, few macrophytes, very poor water clarity

More information on data sources available upon request.

Nutrient Tested	Desired Range	Action Level	Issues with high levels	Likely causes of high levels	
Total Phosphorus	< 30 ppb	> 100 ppb	>100 ppb can unbalance the ecosystem	Reclaimed water discharge, landscape fertilizer runoff and agricultural drainage, phosphorus laden bottom sediments	
Total Nitrogen	< 1200 ppb	>2000 ppb	>1200 ppb can unbalance the ecosystem	Landscape fertilizer runoff	
Ammonia	< 100 ppb	>250 ppb	>500 ppb can be toxic to fish and animals	Organic decomposition, landscape/fertilizer runoff, and anoxic conditions (low oxygen)	

Nutrient Thresholds

The desired range is the threshold value recommended for freshwaters in order maintain a balanced ecosystem.

If nutrients are measured above the action level, it is likely that the nutrient levels may have a detrimental effect on aquatic life and long-term lake health. Action needs to be taken at this point to maintain a healthy ecosystem. Nutrients above the action level will require more maintenance.

TN/TP Ratio

The TN/TP ratio can provide a useful clue as to the relative importance of nitrogen or phosphorus toward the abundance of algae in a waterbody.

In general, the lower the TN/TP ratio the more cyanobacteria bacteria will be present (i.e., Microcystis) and the higher the TN/TP ratio the more desirable green algae will be present.

Studies done on TN/TP ratios have found good agreement in predicting the type of algae present (Schindler et al., 2008; Yoshimasa Amano et al., 2008).

Secchi depth

A mechanical test to judge water clarity, accomplished by lowering a black and white disk into the water and recording the point at which it can no longer be seen.

- · Higher values indicate greater water clarity.
- Nutrient rich lakes tend to have Secchi depths less than 9 feet and highly enriched sites less than 3 feet.

Dissolved Oxygen

The most critical indicator of a lake's health and water quality.

- Oxygen is added to aquatic ecosystems by aquatic plants and algae through
 photosynthesis and by diffusion at the water's surface and atmosphere interface.
- Oxygen is required for fast oxidation of organic wastes including bottom muck.
- When the oxygen is used up in the bottom of the lake, anaerobic bacteria continue to breakdown organic materials, creating toxic gasses such as hydrogen sulfide.
- For a healthy game-fish population, oxygen levels should not go below 4.0 ppb